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1.  Introduction.  Suppose a random sample x ,x ,...,x  is given, assumed 
•   ' • ~ i.  z     n 

to be drawn from a population with continuous distribution F(XJ9), where 

9  is a vector of parameters.  Some or all of the components of  6 may be 

unknown», and when they are estimated by efficient estimators, say by maximum 

likelihood«, we write  8  for the vector 8? with estimated components where 

necessary. A well-known class of goodness-of-fit tests is based on the EDF. 

(empirical distribution function); the test statistics are measures of the 

discrepancy y(x) = Vn(F (x) - F{x;8))„  for the case where 9  is known. 

Important statistics are D = sup y(x) ,  D = sup(-y(x)} ,  D = max(D ,D ) ; 

V = D4" + D~,  W2 = /y2(x)dF;  Ü2 - /.'(y(x) - y)2dF;  A2 = J"y2(x)w2 (x)dF, 

where F = F(x,-8)  and <M  (x) = {F (1-F) 3"1 -and integrals are from -» to ~. 

VJhen 9 is known, as above, we refer to the test situation as Case 0.  When 

9 is replaced by Q-,   the distributions (including asymptotic distributions) of EDF 

statistics-are greatly changed,.  When .unknown components of 8 are location and 

scale parameters, the distributions do not depend on the correct values of these 

parameters but only on the functional form of F.  Two important examples 

2 
are Case 3, where F is the normal distribution with 9 = (u,cf ) , both 

components unknown, and Case 4, where F(x;6) = 1 - expC-x/9)   and 9 is 

unknown.  The Case numbers follow those in Stephens (1974) where the statistics 

above, and their power properties in the above situations, are discussed in 

some detail? also discussed are Cases 1 and 2, where F(x;9)  is the normal 

2 2  2 
distribution with, respectively, only  U or 0       unknown.  For W , U  and 

2 
A  asymptotic points can be derived theoretically (Stephens, 1976? Durbin, 

Knott and Taylor, 1975); for the D-group and V  this has so far not been done. 

For finite n,  a number of authors have produced percentage points for 

Cases 3 and 4 by Monte Carlo methods (for references see Stephens^1974), 



and for Case 4, some theoretical advances have been made by Durbin (1975b) and 

by Margolin and Maurer (1976).  Stephens (1970, 1974) used the exact and Monte 

Carlo points to make modifications to the above test statistics, so that for 

each of Cases 0, 3 and 4, they can be used with asymptotic percentage points only. 

2.  The half -sample method.  Rao (1972) produced an adaptation of the empirical 

process, using an estimate for 9, which would asymptotically behave as in 

Case 0, but it is quite tedious to calculate.  Durbin (1973) then pointed 

out a much, simpler process with the same property.  Suppose a randomly- 

chosen half of the x-sample is used to estimate unknown components of 

6, by efficient methods. This estimate 8 is used to construct F(x;8) 

and EDF test statistics are calculated in the usual way, using the whole 

sample.  Asymptotically, the behaviour of y(x)  (with F(x;9)  instead of 

F(x;6))  is as though 8 were known completely, and EDF statistics will 

have the distributions of Case 0 (Durbin 1973, p.59). 

Two obvious applications would be to testing of normality and exponentiality 

as discussed above.  For practical calculations, suppose x and s are the mean and 

standard deviation of the random half-sample; these replace x and s in 

the calculations for z.  set forth in Section 3.1 of Stephens (1974).  (Note 

that there is a misprint in Case 4:  z.  should be given by z. = 1 - exp(-x./x), 
X 1 1 

and in the half-sample method z.  would be  1 - exp(-x./x)).  The set z. 

is calculated from the x.  for the whole sample, and then the test statistics are 

calculated as given by Stephens.  Their asymptotic percentage points will be those in 

his Table 1.0, and we shall see below that the finite-n modifications also 

2 
work well for most statistics (but importantly not A ). 



3„  The method of random substitution.  Another technique for making a test 

with unknown parameters into a Case 0 test has also been given by Durbin (1961) 

When the method is applied to goodness-of-fit tests, a combination of the 

given sample and an arbitrarily chosen value of the unknown parameter(s) 

is used to construct a new set,  S,  of sample values.  Durbin calls this 

procedure the method of random substitution, and shows that the distribution 

function of the values x in S is F(x,9) ,  with 6 known; thus the 

original null hypothesis can be tested using  S  and Case 0 points»  In 

subsequent work Durbin (1975a, 1976) has further shown that the half-sample 

device and the method of random substitution have empirical processes which 

are asymptotically equivalent even .'for true distributions alternative to the 

null; thus we can expect these two techniques to possess similar power prop- 

erties, at least for large samples.  Durbin (1976) discusses the two methods 

from a practical point of view, and suggests that the half-sample technique 

is easier and more attractive in practice.  The existence of this straight- 

forward method then implies that the effort expended by many authors in find- 

ing percentage points for Cases 3 and 4, as described in Section 1, might have 

been unnecessary; one merely splits the sample, estimates parameters, and 

refers to existing Case 0 points, at least for large samples!  An objection, 

for many statisticians, to the half-sample device (also to the method of 

random substitution) is that two statisticians can obtain different values 

for test criteria from the same data.  This objection does not apply to 

standard Case 3 and Case 4 procedures; we now show that there is also a 

considerable difference in power. 



4.  Comparison of the half-sample method and the standard Case 3 and Case 4 

methods. 

(a)  Percentage points for finite n.  If the half-sample device is followed, 

the distributions of EDF statistics behave asymptotically as in Case 0:  it 

would be a remarkable bonus if the distributions for finite n were not too 

different also.  This has been investigated as follows.  For normal samples 

of size  n,  the half-sample method for testing normality (called HS3) was 

followed, and modified forms of EDF statistics calculated as in Stephens 

(1974, Table 1.0).  Hopefully these would then have their Case 0 asymptotic 

distributions, with the percentage points in that Table.  Results based on 

10,000 Monte Carlo samples are given in Table 1.  It can be seen that the 

2 
results are very good, except for A .  The experiment was repeated for expon- 

ential samples, using the split-sample method for the exponential test  (HS4), 

- -2 + 
with results in Table 2.  Again A  gives poor results, and also D  and 

- 2 D .  Note that the A  points are those for the unmodified statistic, because 

2 in Case 0 A  requires no modification for finite samples; "asymptotic" begins 

at n = 3.  In the power studies which follow, the Monte Carlo points in Tables 

1 and 2 have been used for all the modified statistics. 

(b)  Power studies.  We next examine the power of HS3 and HS4 against the 

rival 'standard* Case 3 and Case 4 techniques, also by Monte Carlo methods. 

From various alternative distributions, at least 1000 samples of size n 

were taken and tested by the two techniques.  Table 3 gives the results 

for testing normality, both parameters unknown, and Table 4 gives them 

for the test for exponentiality,  6 unknown.  The tables record the 

percentage of Monte Carlo samples declared significant by the statistics when 

tests were made at the 10% level.  Tables are available also for 5% tests. 



5.  Discussion.  (a)  In Tables 3 and 4 it can be seen that the half-sample 

method produces uneven powers for the various test statistics; these results 

throw some light on the effect of the method.  The null hypothesis is that 

x has distribution F(x;9),  and the test statistics are calculated from 

values  z. = F(xij9*),  i = l,2f...n,  where  6* = 8,  or 9*'is an estimate 

when 9  is unknown.  For Case 0,  9* = 9 and if the null hypothesis is 

true the  z.  are uniformly distributed between 0 and 1; this is also true 

for the  z,  found from the half-sample method, or by the method of random 

substitution.  When the null hypothesis is not true, for any of these 

techniques, the z.     will not be uniform,, and their pattern can be roughly 

determined by observing which test statistics are large.  When D  or D 

are large, z-values have moved towards 0 or 1 respectively; large D and 

2 
W  imply a shift of the mean to either right or left, and large V or 

2        ~ 
U  imply a clustering of  z-values, or a division into two groups towards 0 

2 
and 1.  Large values of A  also imply values approaching either extreme. 

As an illustration, consider the test for normality, on a sample of size 

2 
n = 10, when in fact the true distribution is X-, •    When the half-sample . 

method was used, it was found that in most samples the z-values were almost 

-f 
all between 0.1 and 0.4; thus  D  wxll be large, and the ciusterxng makes 

2 
V and U large also, leading to high powers for these statistics in Table 

3.  The relative powers thus give some indication of the z-pattern.  When 

standard Case 3 techniques are used in the same problem, the z-values do not 

cluster together as above; the fitted normal curve is in fact close enough 

to the EDF that no one statistic  is overwhelmingly superior to the others. 

This levelling of power in standard Case 3 and Case 4 techniques was noted 

previously (Stephens, 1974); it can be seen again throughout Tables 3 and 4. 



(b)  Turning now to the main comparison, wa see that the half-sample method 

is nowhere superior to use of standard Case 3 or Case 4 techniques, and the work 

done in providing percentage points for these Cases has after all been.useful.  Where 

tables of percentage points for EDF statistics have been prepared for other distri- 

butions under test, with unknown parameters, we might expect to find similar 

comparisons.  Such tables exist for the Gamma distribution (Pettitt and 

Stephens (1975)) and the extreme value distribution (Stephens, 1976b). 

Among the EDF statistics it is clear from the tables that on the whole, 

for a test for normality, the Kolmogorov D is a poor statistic, and that 

2 
A  has a slight superiority over the others.  This bears out results in 

Stephens (1974, Tables 5 and 6).  In Case 4,  D is not relatively so weak; 

also, if one were sure of the direction of skewness of the alternative 

+      - distribution, statistics D  or D  will give good power for this Case. 

~ 2 
Overall,   however,     A       still  scores best when this information is  not avail- 

2 
able.  The evidence of both tables gives good support to A  as an omnibus 

test statistic for both Cases 3 and 4. 

Finally we emphasise that this work does not obviate the usefulness 

of the split-sample method for occasions where parameters to be estimated 

are not location and/or scale parameters or where the necessary tables have 

not been provided.  Some comparisons are being made between this method and 

Pearson's chi-square, its obvious rival in-these situations. 
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7. 

Table  1 

Upper tail percentage points  for modified EDF  statistics: 

half-sample test    for normality. 

The points are     found       from 10000 Monte Carlo s amples   for each sample size. 

Statistic Sample• 
Size 

a(%) : 10 5 2.5 1.0 

+ 
D 10 1.087 1.237 1.376 1.520 

20 1.070 1.223 1.349 1.512 

50 1.076 1.240 1.380 1.550 

CO 1.073 1.224 1.358 1.518 

D~ 10 1.078 1.232 1.363 1.485 

20 1.064 1.231 1.368 1.540 

50 1.067 1.216 1.358 1.529 

oo 1.073 1.224 1.358 1.518 

D 10 

20 

50 

1.235 

1.222 

1.230 

1.224 

1.370 

1.358 

1.371 

1.358 

1.476 

1.479 

1.493 

1.480 

1.585 

1.636 

1.635 

1.628 

V 10 

20 

50 

1.595 

1.613 

1.615 

1.620 

1.705 

1.740 

1.738 

1.747 

1.787 

1.842 

1.854 

1.862 

1.867 

1.968 

1.992 

2.001 

W 10 

20 

50 

.351 

.341 

.351 

.347 

.456 

.457 

.480 

.461 

.566 

.580 

.604 

.581 

.711 

.779 

.767 

.743 

U 10 

20 

50 

.149 

.152 

.154 

.152 

.182 

.184 

.188 

.187 

.207 

.218 

.222 

.221 

.230 

.256 

.267 

.267 

10 

20 

50 

3.00 

2.09 

1.93 

4.55 

3.13 

2.76 

2.49 

6.68 

4.27 

3.52 

3.07 

10.34 

6.09 

4.44 

3.86 



8. 
Table 2 

Upper tail percentage points for modified EDF statistics: 

half.-sample test for exponentiality 

The points are found  from 10000 Monte Carlo samples for each sample size. 

Statistic Sample 
size a(%):            10 5 2.5 1.0 

+ 
D 10 .943 1.088 1.215 1.362 

20 .982 1.132 1.257 1.4 

50 1.025 1.167 1.284 1.4 

oo 1.073 1.224 1.358 1.518 

D~ 10 1.179 1.316 1.422 1.568 

20 1.140 1.298 1.423 1.566 

50 1.111 1.270 1.421 1.581 
CO 1.073 1.224 X a  SZiO 1.518 

D 10 1.230 1.354 1.465 1.596 

20 1.228 1.351 1.471 1.619 

50 1.222 1.363 1.499 1.635 

CO 1.224 1.358 1.480" 1.628 

V 10 1.617 1.738 1.837 1.954 

20 1.687 1.735 1.851 1.988 

50 1.609 1.735 1.851 1.988 

00 1.620 1.747 1.862 2.001 

w2 
10 .352 .466 .579 .717 

20 .345 .464 .594 ..758 

50 .349 .476 .598 .774 

CO .347 .461 .581 .743 

u2 
10 .152 .187 .218 .253 

20 .151 .184 .219 .260 

50 .151 .185 .220 .267 

CO .152 .187 .221 .267 

2 
A 10 2.18 2.99 3.92 5.60 

20 2.05 . 2.69 3.50 4.50 

50 1.99 2.66 3.29 4.31 

CO 1.93 2.49 3.07 3.86 



Table 3 

Comparison of power, test for normality: 

half-sample method (HS) versus standard Case 3 (C3) . 

The table gives the percentage of Monte Carlo samples declared significant 
by the test statistics.  The test is at the 10% level. 

True 
distribution 

n •Method | 
- -. • .      + 

Statistxc:   D D ' D V 
2 

W 
2 

U A2 

uniform 10 HS 9 10 11 9 10 10 10 

10 C3 9 7 14 18 16 18 16 

20 HS 11 13 12 16 10 15 11 

20 C3 16 16 21 28 29 32 31 

2 
*1 

10 HS 33 7 22 48 21 50 18 

10 C3 68 33 67 76 77 76 79 

20- HS 55 39 51 84 50 82 58 

20 C3 95 87 94 97 98 97 98 

2 x2 10 HS 23 7 18 29 15 30 13 

10 C3 45 9 43 52 53 52 56 

20 HS 40 12 31 .59 29 56 31 

20 C3 75 40 69 77 79 76 84 

2 
*4 

10 HS 16 7 13 18 12 18 10 

10 C3 28 4 27 32 32 32 34 

20 HS 28 7 20 33 19 33 19 

20 C3 50 8 42 46 53 49 58 

2 
*6 

10 HS 15 8 13 15 12 16 13 

10 C3 25 3 25 25 26 26 28 

20 HS 23 6 16 26 14 26 15 

20 C3 43 4 35 34 40 36 44 

Cauchy 10 HS 23 25 35 42 31 44 23 

10 C3 50 48 65 67 67 67 67 

20 HS 47 47 61 71 58 72 66 

20 C3 79 80 88 90 91 91 91 

log- 10 HS 28 7 21 38' 19 38 17 
normal 

10 C3 62 20 59 66 67 66 69 

20 HS 52 22 44 71 43 70 49 

20 C3 90 65 87 90 92 90 93 



10. 

Table 4 

Comparison of power, test for exponentiality: 

half-sample method (HS) versus standard Case 4 (C4) . 

The table gives the percentage of Monte Carlo samples declared significant 
by the test statistics.  The test is at the 10% level. 

True 
distribution 

n Method Statistic: D D D V XI2 

W 
2 

U A2 

uniform 10 HS 3 24 20 44 18 41 10 

10 C4 1 55 43 48 51. 48 45 

20 HS 10 50 40 74 43 68 35 

20 C4 14 83 70 79 82 75 80 

2 
*1 

10 HS 35 8 22 29 21 29 39 • 

10 C4 42 2 32 29 35 30 53 

20 HS 54 8 37 49 40 50 61 

20 C4 69 1 56 49 60 51 77 

2 
x4 

10 HS 3 22 18 28 17 29 10 

10 C4 1 . 46 35 32 40 36 33 

20 HS 3 38 29 47 31 49 26 

20 C4 1 70 54 50 61 54 60 

2 
X6 

10 HS 2 36 30 51 29 56 15 

10 C4 0 74 62 60 71 65 65 

20 HS 5 74 64 88 65 90 59 

20 C4 3 96 91 88 95 91 95 

half- 10 HS 38 7 30 29 30 30 41 
Cauchy 

10 C4 49 4 43 39 47 41 49 

20 HS 55 6 49 50 48 50 60 

20 C4 73 2 68 59 70 61 70 

log- 10 HS 13 11 14 13 14 13 13 
normal 

10 C4 12 15 18 17 18 17 15 

20 HS 19 14 19 22 20 22 18 

20 C4 18 18 21 22 23 25 23 

half- 10 HS 3 16 13 19 13 19 9 
normal 

10 C4 1 25 20 19 22 21 18 

20 HS 3 24 17 25 17 25 14 

20 C4 1 45 28 26 33 28 29 
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